If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3w^2-4w+4=0
a = -3; b = -4; c = +4;
Δ = b2-4ac
Δ = -42-4·(-3)·4
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8}{2*-3}=\frac{-4}{-6} =2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8}{2*-3}=\frac{12}{-6} =-2 $
| 27.2c+15.7=85.94+0.8c | | -37+7x=76-x | | x^2+4=8x+5 | | 9k+11=8k | | -37-7x=76-x | | 5(-4a-5)=135 | | 10j+-20j=-10 | | 5a-6=4a-2 | | -14-j=-2j | | 11x-6=8x+9x | | 6s=–6+4s | | -13+6v=7v | | 95/5=(f-32)/9 | | 3x+4=18x-4 | | 2(3x+)+2=4+3x | | 10-2j=-8 | | 6x+14+20=180 | | 2x+13+16x-4=90 | | -60=-4n-20 | | 5+.65x=10 | | 2*8v+9=98 | | 3x+35=7x+1 | | (2x-1)(x-2)=63 | | 3(2y)+y=2(2y)+3y | | 4=4(n+11) | | 83=m+46 | | 6x-19=-79 | | 1=2r−7 | | 5(x+350)=27.50 | | 0=-56^2-14x | | 10x=0.009 | | 93=c+14 |